Reg. No. :					7							
------------	--	--	--	--	---	--	--	--	--	--	--	--

Question Paper Code: 50546

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Seventh Semester

Electrical and Electronics Engineering

EE 8702 — POWER SYSTEM OPERATION AND CONTROL

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define load curves and give the types.
- 2. Write the necessary conditions for two synchronous generators sharing the load in parallel operation.
- 3. Give the advantages of the AVR loop over ALFC.
- 4. Draw the block diagram representation of two area systems.
- 5. List the sources of reactive power and its controlling methods.
- 6. When is feedback stability compensation used?
- 7. Differentiate the economic load dispatch and optimal power flow.
- 8. What are the objectives of hydrothermal scheduling?
- 9. Give the functions of the control center.
- 10. What is weighted least square estimation?

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Explain the necessity of voltage and frequency regulation in the power system.

Or

- (b) What are the components of the speed governor system of an alternator? Derive mathematical model of the speed governor system with aid of a block diagram.
- 12. (a) Draw the transfer function block diagram for a single area system provided with static analysis of an uncontrolled case and controlled case.

Or

- (b) Explain with a neat block diagram the integration of economic dispatch with toad frequency control.
- 13. (a) (i) Demonstrate in brief the brushless excitation system. (7)
 - (ii) Point out the relations between voltage, power, and reactive power at a node for applications in power system control. (6)

Or

- (b) Explain the operation of TCR and TSC with necessary V-I characteristics.
- 14. (a) What is meant by unit commitment? and briefly explain the constraints on unit commitment.

Or

(b) Consider two units of a plant that have fuel costs of

$$F_1 = 0.2P_1^2 + 40P_1 + 120 Rs./h$$

$$F_2 = 0.25P_2^2 + 30P_2 + 150 Rs./h$$

- (i) Determine the economic operating schedule and the corresponding cost of generation for the demand of 180 MW. (7)
- (ii) If the load is equally shared by both units, determine the savings obtained loading the units optimally. (6)
- 15. (a) Briefly discuss the energy control centers and their functions.

Or

(b) Describe the various functions of SCADA in the control of power systems.

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) A 132 kV line is fed through an 11/132 kV transformer from a constant 11 kV supply. At the load end of the line, the voltage is reduced by another transformer of a nominal ratio: 132/11kV. The total impedance of the line and transformers at 132kV is (25+j66)V. Both transformers are equipped with tap-changing facilities which are arranged so that the product of the two off-nominal settings is unity. If the load on the system is 100 MW at 0.9 p.f. lagging. Calculate the settings of the tap-changers requited to maintain the voltage of the load bus bar at 11 kV Use a base of 100 MVA.

Or

(b) Analyze the economic dispatch of thermal units considering with and without transmission losses.

3 50546